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LETTER TO THE EDITOR 

Spin-Peierls dimerization and frustration in two-dimensional 
antiferromagnets 

A Feiguin, C J Gazza, A E Trumper and H A Ceccatto 
Instituto de Flsica Rosario, Universidad National de Rosario, Boulevard 27 de Febrero 210 
Bis. 2000 Rosaio, Argentina 

Received 5 June 1994 

Abstract We have investigated the stability of the antiferromagnetic order in the ground state of 
the two-dimensional Heisenberg model against a lattice dimerization produced by the electron- 
lattice interaction. Unlike the one-dimensional case. we found that a critical coupling is required 
to form adimerized state via a first-order phase transition. We have also considered the combined 
effects of frustrating second-neighbour interactions and lattice dimerization in destroying the 
Ntel order. Our approach is based on the Schwinger representation of spin operators. and is in 
excellent quantitative agreement with exact numerical results an finite lattices. 

The discovery of superconductivity in copper oxide compounds has brought a new surge 
of interest in the two-dimensional (2D) Hubbard model. There have been several proposals 
to explain the high superconducting temperatures in terms of this model [l], with [ 24 ]  
or without [51 novel pairing mechanisms. In some of these proposals [3,4] the lattice 
dimerization due to the electron-phonon (e-ph) interaction plays some role, which motivated 
recent studies of the Peierls instability at half filling [6,7]. In this work we reinvestigate 
the problem of lattice dimerization in the strong repulsion (large-U) limit of the half-filled 
Hubbard model. In this limit, for lattice distortions treated in the adiabatic approximation 
we are led to consider the spin-Peierls Hamiltonian, 

The exchange coupling Jij = 4t; f U, with tij = t - a : ~ .  Here a: is the e-ph coupling, t 
is the Hubbard hopping integral, and uij =I ui - uj I i s  the change in distance between 
nearest-neighbour sites i and j after dimerization. We have called K the lattice elastic 
constant and, according to the adiabatic approximation, we treat the displacements ut as 
classical parameters. In this way, the influence of the dimerization phonon mode is reduced 
to a change in the effective hopping integral. 

Without the e-ph coupling, on a square lattice the ground state of (1) displays long-range 
Nkl order. In the presence of lattice distortions, the gain in magnetic energy in the first 
term of (1) favours dimerization, while the cost in elastic energy (the second term) opposes 
it. Competition of these two effects eventually leads, for a large enough e-ph coupling, to 
the destruction of the N€el order and the establishment of a permanent lattice distortion. 
The displacement patterns considered in this work correspond to dimerizations produced 
by either a (n,O) or a (ii, n) phonon. Other possibilities have been discussed in [7], but 
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the differences in energy with these two patterns are negligible, and require consideration 
of displacements along both lattice directions. In agreement with the results of [7], we 
found that distortions following the ( E ,  0)-phonon pattern lead to a larger energy gain 
(except for the eight-site lattice, where the two patterns are degenerate). Consequently, we 
will consider displacements given by ai = f(u/2)(1,0), where the f signs correspond 
to the two sublattices moving in opposite directions. For u/a  << 1 (a is the lattice 
constant) the transversal coupling is practically unaffected, JT Y 4t2/U = J ,  while in 
the longitudinal direction one has JL = 4(t & au)’/U. Then, by introducing [6] the 
adimensional displacement x = ua / t  and coupling A = 3 k Z / K U ,  the Hamiltonian (1) is 
reduced to 

We defined & = A j / J  = ( I  zkxqjj)’, where qij is equal to unity fori, j nearest neighbours 
in the longitudinal direction, and is zero otherwise. Furthermore, in order to treat dimerized 
states we locate sites by lattice vectors n and basis vectors r, that describe the unit cell of 
the distorted lattice. 

In the following we will use the Schwinger representation of spin operators: S, = 
iaL . u . a,, where U are the Pauli matrices and the bosonic spinors a, = 
(a,,~.a,~) are constrained to UL . a, = 2s. Then, by defining the spin singlets 
- t  BnnCud = 4 E,, aAn.aon,u,, &nw = 4 C, ~ l a . , ~ a - , , ~ ~ ‘ . ~ .  we perform a rotational 
invariant decomposition of (2) in terms of the order parameters B,,.(n - n’) = (L?An,am,) 

[81. Bogoliubov diagonalization of the resulting Hamiltonian 
allows us to obtain the ground-state energy, which is a function of the order parameters 
and the Lagrange multipliers Aa that impose the boson number restriction (on average). 
Minimization with respect to these quantities produces self-consistency equations that 
are solved numerically. The ground-state energy of the full Hamiltonian (2) is finally 
obtained by adding the contribution of the elastic energy due to the lattice distortion, and 
minimizing with respect to x .  We repeat this procedure for the different distortion patterns 
considered. As mentioned before, we found that the pattern associated with a (n, 0) phonon 
is energetically preferred to that corresponding to a (n, n) phonon. 

We have checked the reliability of our approach by comparing its predictions with exact 
results on finite lattices. Following [6], we note that the ground-state energy per site can 
be written as 

and A d n  - n’) = (Ann,ud) ^ t  

E = Eo + (UZ + l/A)x2 + f ( ~ )  

where EO is the energy of the undistorted lattice, and f ( x )  = 44x4+a&x6+. . .. In figure 1 we 
show the function f ( x )  for a eight-site lattice calculated as described above, and the exact 
one obtained by numerical diagonalization [6]. There is an excellent agreement between the 
two curves. In particular, numerically one finds 4 N -0.792, while the present approach 
gives a2 = -0.750. Our results predict that a critical e-ph coupling A, Y 1.175 is required 
to dimerize the lattice, with the incipient antiferromagnetic order in this finite lattice being 
stable for weaker couplings. For A + A, there is a finite distortion x x, N 0.6, which 
suggests that the transition to the dimerized state would be of first order. Note that a 
necessary condition for a second-order transition is a4 > 0 in the expansion of f ( x ) .  The 
exact treatment in [61 and our approximation produce both negative values for u4. In our 
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Figure 1. The Function f ( x ) ,  defined in (3) of the main iext, for the eiat-site lattice. The full 
line is the prediction of the present work; open points are exact results from 161. 

Lattice Displacement Log(x) 
Figure 2 The magnetic energy gain AEM as a function of the lattice distortion x. The full line 
is the prediction o f  the present work; open points are Monte Carlo results from,[71. 

case we obtained a4 Y -0.059 (performing numerical derivatives of the energy to the given 
accuracy requires solving the consistency equations to 0(1O-l6)). The corresponding value 
is not quoted in [6]. As a further check in figure 2 we compare the magnetic energy gain 
A& with the Monte Carlo results of [7]. The agreement is again quite good. 

After validating our approximation by comparison with exact results on finite lattices, 
we turn to the consideration of the thermodynamic limit. To approach this limit we have 
solved the numerical problem on a 40 x 40 lattice, which produces a negligible error in the 
relevant quantities. In this case we found h, 1.08, with a critical displacement x, = 0.48. 
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The coefficients in the expansion of f ( x )  are a12 N -0.91 and a4 -0.02, which indicates 
again a Erst-order transition for the infinite lattice. We stress that this is at variance with 
the results of standard spin-wave theory, which predicts a second-order transition. It agrees, 
however, with the conclusions of numerical studies on finite lattices [6,7]. In figure 3 we 
plot the infinite-lattice ground-state energy per site as a function of x ,  for several values of 
the e-ph coupling. 

-0.65 - 

0.0 0.2 -0.4 0.6 0.8 1.0 

X 
Figure 3. The ground-state energy per site E ( x )  as a function of the lattice distortion X. for 
Jz = 0 and different values of I .  Inset. the function f (x) defined in (3) of lhe main text. 

We have also considered the effects of including a second neighbour spin interaction Jz. 
Partially this is motivated by the suggestion that next-nearest-neighbour interactions model 
to some extent the effects of holes in the low-doping regime of the Cu-0~ planes [9]. In 
particular, even without considering the e-ph coupling, in the region near J -213 - 1 = 0.5 
the system is believed to have a dimer phase [lo] produced by the strong frustration. We 
have previously studied this rigid-lattice JI-Jz model [I l l ,  and in the following we will 
discuss the effects of including the e-ph interaction. 

Under the assumption that the interaction between second neighbours i ,  k is originated 
by the hole movement [9], the coupling Jik = 4t&kS/U. Here tij and $k are the 
hopping integrals between nearest neighbours in the longitudinal and transverse directions 
respectively. This result is obtained for dopings 6 = 1 - n 5 0. As before, we considered 
tij = t & G'U and t j k  1: t, so that J i k  = Jz(1 f xq i j )  with JZ = J S .  On the other hand, 
the hole movement also affects the ,nearest-neighbour exchange, producing an effective 
coupling J1 N J [ l  - (5 + U/t)8] (for simplicity we will disregard momentarily the third- 
neighbour coupling J3 2: 5212 [9].) We have solved the consistency equations with 52/51 
as a new parameter. In figure 4 we show the energy of the infinite lattice as a function of 
the reduced displacement x ,  for A = 1 and several values of J z / J , .  In figure 5 we plot A, 
and x, as functions of J z / J ] .  As expected, the critical values decrease with the frustration 
level. The dashed lines are quadratic (for A,) and linear (for xc)  extrapolations into the 
region where the N&l order becomes metastable [ll]. There, the solution corresponding 
to this order becomes increasingly harder to find, since the consistency-equation iterations 
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Figure 4. The ground-state energy per sire E(%) as a function of the laltice distortion x for 
A = I and different values of the ratio J Z J I I .  
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JdJ 1 
Figure 5. The critical value Ac, corresponding to the minimum electron-phonon coupling 
required to dimerize the lattice. as a function of J z / J l .  The value x, is the lattice displacement 
produced by Ac at the first-order dimerization transition. Dashed lines are extrapalations as 
described in the main text 

lead to other more stable solutions. For xc the extrapolation indicates that it vanishes near 
J 2 / J ,  N 0.63, the point at which the Ntel order of the undistorted lattice is melted by the 
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frustration 1111. At this point the scenario is similar to the one-dimensional case, where 
the transition is second-order and the lattice becomes highly susceptible to dimerization. 
Then, in the neighbourhood of this point Hirsch’s [4] ideas concerning the connection 
between superconductivity and a ‘bond charge-density-wave’ state could apply. However, 
the extrapolation for A, shows that, unlike the one-dimensional case, here a finite e-ph is 
required to distort the lattice. 

To conclude, let us discuss the application of the above results to the Cu-02 planes in 
LazCu04, keeping always in mind the limitations of our approach. In a previous work 181 
we studied the J,-J2-53 model on the special line JZ = 253, a situation that corresponds 
to next-nearest-neighbour interactions generated by the hole movement [9]. We found that 
in this case the N€el order disappears at 52/51 = &/I1 - (5 + U/t)&] N 0.38, which for 
U/r  = 5-10 gives 6, = 0.079-0.057, that is, in the observed range. On the other hand, 
Zhang and Prelovsek have estimated [6] and reduced e-ph coupling of the Cu and 0 ions to 
be Acuo 2 2.1-2.6. The e-ph coupling for Cu-Cu ions is related to a second-order hopping 
process (via 0 ions), and is then expected to be appreciably less than this value. However, 
in view of the decrease of A, shown in figure 5 ,  it seems likely that near the point where 
the antiferromagnetic order is destroyed by doping the lattice becomes highly susceptible 
to dimerization. 

One of the authors (HAC) is grateful to Fundacion Antorchas for partial financial support. 
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